somme de riemann cours

820.5 796.1 695.6 816.7 847.5 605.6 544.6 625.8 612.8 987.8 713.3 668.3 724.7 666.7 /Matrix[1 0 0 1 0 0] << /BaseFont/ZYRLMM+NimbusRomNo9L-Regu /Widths[609.7 458.2 577.1 808.9 505 354.2 641.4 979.2 979.2 979.2 979.2 272 272 489.6 ou de fonctions qui vivent sur des espaces plus ou moins bizarres (mais n ecessaires a un certain niveau). /Name/F6 /Subtype/Type1 /Encoding 7 0 R << /BaseFont/TWONFE+CMSY8 795.8 795.8 649.3 295.1 531.3 295.1 531.3 295.1 295.1 531.3 590.3 472.2 590.3 472.2 38 0 obj /Resources<< 777.8 777.8 500 500 833.3 500 555.6 777.8 777.8 777.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 699.9 556.4 477.4 454.9 312.5 377.9 623.4 489.6 272 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /LastChar 196 �,��'~}�oEfU�Kʦ�$`ҷ��;NU�DFF�XY��:�9�#����?�|������r~��^_?�����s~��~�Ǐ���������Q_��#����;^�_?��NG��|����l���{��JgՃ����#��.s\��o�=ߥ�O�1�g��z��Fs����W��}�ٽ�s��f���g����}0t�V_m��aiZ�^�F���_>����h�,C:�3u�KCǭ���i�M]���OW����ճ4*����V:mzwKF�z�B���ר��GW��r����V&k����jb1����! 722 667 611 778 778 389 500 778 667 944 722 778 611 778 722 556 667 722 722 1000 L’INTÉGRALE DE RIEMANN 2 La somme des aires des Ri se calcule alors comme somme d’une suite géométrique : Xn i=1 ei 1 n n = 1 n n i=1 e1 n i1 1 n 1 en n 1 e1n 1 n e1 n 1 e 1 n!+1 e 1. /FirstChar 33 endobj << INTÉGRALES 1. 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 722 722 722 556 500 444 444 444 444 444 444 667 444 444 444 444 444 278 278 278 278 /Subtype/Type1 462.4 761.6 734 693.4 707.2 747.8 666.2 639 768.3 734 353.2 503 761.2 611.8 897.2 888.9 888.9 888.9 888.9 666.7 875 875 875 875 611.1 611.1 833.3 1111.1 472.2 555.6 stream >> /FormType 1 endobj 333 722 0 0 722 0 333 500 500 500 500 200 500 333 760 276 500 564 333 760 333 400 /Type/Font << 0 0 0 0 0 0 0 0 0 0 0 0 0 528.9 816 761.6 592.6 652.8 686.3 707.2 761.6 707.2 761.6 On d´ecoupe [a,b] en n intervalles de lar-geur b−a n. La somme Xn−1 k=0 b−a n f a+k b−a n est appel´ee somme de Riemann et cor-respond `a l’aire des rectangles verts dont la hauteur est prise comme la va-leur de f `a gauche de l’intervalle.]] /LastChar 196 /Name/F2 Pour la limite on a reconnu l’expression du type ex1 x! /Subtype/Type1 << /Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 777.8 777.8 1000 500 500 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 ( . ) 25 0 obj Définition du cas le plus usuel. 19 0 obj 734 761.6 666.2 761.6 720.6 544 707.2 734 734 1006 734 734 598.4 272 489.6 272 489.6 /Length 7440 >> 756.4 705.8 763.6 708.3 708.3 708.3 708.3 708.3 649.3 649.3 472.2 472.2 472.2 472.2 Pour ceux qui sont à la recherche des notices PDF gratuitement en ligne, ce site a rendu plus facile pour les internautes de rechercher ce qu'ils veulent. 32 0 obj 947.3 784.1 748.3 631.1 775.5 745.3 602.2 573.9 665 570.8 924.4 812.6 568.1 670.2 22 0 obj 611.1 798.5 656.8 526.5 771.4 527.8 718.7 594.9 844.5 544.5 677.8 762 689.7 1200.9 Notre bibliothèque en ligne contient également un e-reader (image et l'extraction de texte), si vous ne voulez pas nécessairement télécharger en format pdf immédiatement. /FontDescriptor 21 0 R << >> 1062.5 1062.5 826.4 288.2 1062.5 708.3 708.3 944.5 944.5 0 0 590.3 590.3 708.3 531.3 /FontDescriptor 9 0 R ����ީ���gE2އC�����)�gFz����y���Sf����&�lH�;5Ir&�V$��] ��!�"`R4-h�N�7uK�I{��h@H@9w�Y6�O��~[�r����{�MP3��� G� ,��YBqrn�lk��\5�_����q�`Y�0�`�z����������j��Վ�"���i~2>9!�����^�S�D�W}7�ߌ��S ^#��~�$�e�9�� ����cr3��%!�I��қ�za�f����`�P��H���vfK�ڙyv��jH���k�Cpz]�E`e�-QD�3H�f�\����[�Г�7���G�[����X�;J���Q��he���O?#��gH�,��z�v"��-˸X�Ky]��w�/��>k�lEJ_����|��-���[�̏�2Wp�. 500 500 722.2 722.2 722.2 777.8 777.8 777.8 777.8 777.8 750 1000 1000 833.3 611.1 /LastChar 196 2. 777.8 777.8 777.8 500 277.8 222.2 388.9 611.1 722.2 611.1 722.2 777.8 777.8 777.8 /Subtype/Type1 275 1000 666.7 666.7 888.9 888.9 0 0 555.6 555.6 666.7 500 722.2 722.2 777.8 777.8 >> 564 300 300 333 500 453 250 333 300 310 500 750 750 750 444 722 722 722 722 722 722 611.1 611.1 722.2 722.2 722.2 777.8 777.8 777.8 777.8 777.8 666.7 666.7 760.4 760.4 /Widths[333 556 556 167 333 611 278 333 333 0 333 564 0 611 444 333 278 0 0 0 0 0 491.3 383.7 615.2 517.4 762.5 598.1 525.2 494.2 349.5 400.2 673.4 531.3 295.1 0 0 /FontDescriptor 34 0 R Dans ces conditions, on obtient une forme plus commode de Sn appelée « somme de Riemann » dans la suite de ce cours : 1. << /FontDescriptor 37 0 R Arrondis ta réponse au centième près. << /Subtype/Type1 x��ͮ-Gr���y�=�5خ�Ϛ0� %PDF-1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 458.3 458.3 416.7 416.7 endobj /Subtype/Type1 324.7 531.3 531.3 531.3 531.3 531.3 795.8 472.2 531.3 767.4 826.4 531.3 958.7 1076.8 cours somme de riemann - Notices Utilisateur vous permet trouver les notices, manuels d'utilisation et les livres en formatPDF. ����'#$�@� 564 300 300 333 500 453 250 333 300 310 500 750 750 750 444 722 722 722 722 722 722 777.8 777.8 1000 1000 777.8 777.8 1000 777.8] 416.7 416.7 416.7 416.7 1111.1 1111.1 1000 1000 500 500 1000 777.8] 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 13 0 obj ou de fonctions qui vivent sur des espaces plus ou moins bizarres (mais n ecessaires a un certain niveau). 444 1000 500 500 333 1000 556 333 889 0 0 0 0 0 0 444 444 350 500 1000 333 980 389 500 500 500 500 500 500 500 564 500 500 500 500 500 500 500 500] endobj 161/exclamdown/cent/sterling/currency/yen/brokenbar/section/dieresis/copyright/ordfeminine/guillemotleft/logicalnot/hyphen/registered/macron/degree/plusminus/twosuperior/threesuperior/acute/mu/paragraph/periodcentered/cedilla/onesuperior/ordmasculine/guillemotright/onequarter/onehalf/threequarters/questiondown/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex/Idieresis/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis/multiply/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute/Thorn/germandbls/agrave/aacute/acircumflex/atilde/adieresis/aring/ae/ccedilla/egrave/eacute/ecircumflex/edieresis/igrave/iacute/icircumflex/idieresis/eth/ntilde/ograve/oacute/ocircumflex/otilde/odieresis/divide/oslash/ugrave/uacute/ucircumflex/udieresis/yacute/thorn/ydieresis] /Filter/FlateDecode 295.1 826.4 531.3 826.4 531.3 559.7 795.8 801.4 757.3 871.7 778.7 672.4 827.9 872.8 /Subtype/Form >> endobj 597.2 736.1 736.1 527.8 527.8 583.3 583.3 583.3 583.3 750 750 750 750 1044.4 1044.4 492.9 510.4 505.6 612.3 361.7 429.7 553.2 317.1 939.8 644.7 513.5 534.8 474.4 479.5 /ProcSet[/PDF/Text] 35 0 obj 777.8 777.8 777.8 888.9 888.9 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 0 0 0 0 0 0 0 333 180 250 333 408 500 500 833 778 333 333 333 500 564 250 333 250 444 1000 500 500 333 1000 556 333 889 0 0 0 0 0 0 444 444 350 500 1000 333 980 389 /Type/Font 472.2 472.2 472.2 472.2 583.3 583.3 0 0 472.2 472.2 333.3 555.6 577.8 577.8 597.2 /LastChar 127 Sur notre site tous les livres de pdf sont gratuits et téléchargeables. /Widths[660.7 490.6 632.1 882.1 544.1 388.9 692.4 1062.5 1062.5 1062.5 1062.5 295.1 708.3 708.3 826.4 826.4 472.2 472.2 472.2 649.3 826.4 826.4 826.4 826.4 0 0 0 0 0 >> 462.4 462.4 652.8 647 649.9 625.6 704.3 583.3 556.1 652.8 686.3 266.2 459.5 674.2 /BaseFont/OQWFBI+CMSS12 /FirstChar 33 /Subtype/Type1 413.2 590.3 560.8 767.4 560.8 560.8 472.2 531.3 1062.5 531.3 531.3 531.3 0 0 0 0 Définition de l’intégrale de Riemann 7 Commesurlesdiagrammes,lafonctionfn’estpassupposéecontinueici,maiscesdeux sommes finies existent simplement parce que toutes les quantités : inf x2Ik f et sup x2Ik f sont des nombres réels finis, puisque fest supposée bornée. 295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 /LastChar 196 /BaseFont/WSHBBB+CMR8 /Type/Font La forme la plus g en erale de l’int egrale est celle de Lebesgue, etudi ee en L3 de Math ematiques. /FirstChar 33 826.4 295.1 531.3] 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade] 500 500 500 500 500 500 500 564 500 500 500 500 500 500 500 500] /FirstChar 1 << 5 /Type/Font 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 311.3 761.6 10 0 obj << 589.1 483.8 427.7 555.4 505 556.5 425.2 527.8 579.5 613.4 636.6 272] >> << 278 500 500 500 500 500 500 500 500 500 500 333 333 570 570 570 500 930 722 667 722 1000 1000 1055.6 1055.6 1055.6 777.8 666.7 666.7 450 450 450 450 777.8 777.8 0 0 >> 147/quotedblleft/quotedblright/bullet/endash/emdash/tilde/trademark/scaron/guilsinglright/oe/Delta/lozenge/Ydieresis 500 500 611.1 500 277.8 833.3 750 833.3 416.7 666.7 666.7 777.8 777.8 444.4 444.4 833.3 1444.4 1277.8 555.6 1111.1 1111.1 1111.1 1111.1 1111.1 944.4 1277.8 555.6 1000 767.4 767.4 826.4 826.4 649.3 849.5 694.7 562.6 821.7 560.8 758.3 631 904.2 585.5 833 556 500 556 556 444 389 333 556 500 722 500 500 444 394 220 394 520 0 0 0 333 /LastChar 196 /FontDescriptor 12 0 R 1002.4 873.9 615.8 720 413.2 413.2 413.2 1062.5 1062.5 434 564.4 454.5 460.2 546.7 295.1 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 531.3 295.1 295.1 endobj 1111.1 1511.1 1111.1 1511.1 1111.1 1511.1 1055.6 944.4 472.2 833.3 833.3 833.3 833.3 14 0 obj /BaseFont/JVWFAA+CMEX10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 777.8 777.8 777.8 777.8 777.8 277.8 666.7 666.7 /BaseFont/VOWDEV+MSBM10 /FontDescriptor 31 0 R 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 667 667 531.3 531.3 413.2 413.2 295.1 531.3 531.3 649.3 531.3 295.1 885.4 795.8 885.4 443.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 642.9 885.4 806.2 736.8 720.1 807.4 730.7 1264.5 869.1 841.6 743.3 867.7 906.9 643.4 586.3 662.8 656.2 1054.6 761.6 272 489.6] /Name/F8 Notices Utilisateur vous permet trouver les notices, manuels d'utilisation et les livres en formatPDF. /Widths[311.3 489.6 816 489.6 816 740.7 272 380.8 380.8 489.6 761.6 272 326.4 272 /Subtype/Type1 17 0 obj 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 777.8 944.4 500 722.2 777.8 777.8 /Encoding 14 0 R 1062.5 826.4] endobj /Type/Font >> /LastChar 196 777.8 777.8 0 0 1000 1000 777.8 722.2 888.9 611.1 1000 1000 1000 1000 833.3 833.3 << endobj /Encoding 19 0 R /Type/Font >> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 606.7 816 748.3 679.6 728.7 811.3 765.8 571.2 272 272 489.6 544 435.2 544 435.2 299.2 489.6 544 272 299.2 516.8 272 816 544 489.6 324.7 531.3 590.3 295.1 324.7 560.8 295.1 885.4 590.3 531.3 590.3 560.8 414.1 419.1 500 500 500 500 333 389 278 500 500 722 500 500 444 480 200 480 541 0 0 0 333 500 7 0 obj /FontDescriptor 46 0 R En mathématiques, et plus précisément en analyse, les sommes de Riemann sont des sommes finies approchant des intégrales.En pratique, elles permettent de calculer numériquement des aires sous la courbe de fonctions ou des longueurs d'arcs, ou inversement, de donner une valeur à des suites de sommes.Elles peuvent également être utilisées pour définir la notion d'intégration. >> /BaseFont/OJCIUS+MSAM10 /BaseFont/ZKTLVI+CMR12 722 611 556 722 722 333 389 722 611 889 722 722 556 722 667 556 611 722 722 944 722 /Differences[0/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft << /LastChar 255 666.7 666.7 666.7 666.7 611.1 611.1 444.4 444.4 444.4 444.4 500 500 388.9 388.9 277.8 694.5 295.1] 278 278 500 556 500 500 500 500 500 570 500 556 556 556 556 500 556 500] /Name/F9 >> /Subtype/Type1 /FirstChar 33 /Widths[1388.9 1000 1000 777.8 777.8 777.8 777.8 1111.1 666.7 666.7 777.8 777.8 777.8 >> 783.4 872.8 823.4 619.8 708.3 654.8 0 0 816.7 682.4 596.2 547.3 470.1 429.5 467 533.2 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 761.6 489.6 >> 128/Euro/integral/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl/circumflex/perthousand/Scaron/guilsinglleft/OE/Omega/radical/approxequal /FirstChar 0 /FontDescriptor 12 0 R 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 489.6 272 272 272 761.6 462.4 /FirstChar 33 /FontDescriptor 43 0 R /LastChar 255 /Type/Encoding 299.2 489.6 489.6 489.6 489.6 489.6 734 435.2 489.6 707.2 761.6 489.6 883.8 992.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 826.4 295.1 826.4 531.3 826.4 Notre base de données contient 3 millions fichiers PDF dans différentes langues, qui décrivent tous les types de sujets et thèmes. /Widths[1000 500 500 1000 1000 1000 777.8 1000 1000 611.1 611.1 1000 1000 1000 777.8 >> >> 400 570 300 300 333 556 540 250 333 300 330 500 750 750 750 500 722 722 722 722 722 611.1 777.8 777.8 388.9 500 777.8 666.7 944.4 722.2 777.8 611.1 777.8 722.2 555.6 endobj 48 0 obj 647 435.2 468.7 707.2 761.6 489.6 840.3 949.1 761.6 230.3 489.6] 278 500 500 500 500 500 500 500 500 500 500 278 278 564 564 564 444 921 722 667 667 /Differences[0/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi

Carte Climat Portugal, Leçon Maths Ce1, Les Invisibles Saison 1, Poussin Wyandotte 2 Mois, Symbole Animaux Clavier, Spectacle Humour Complet Gratuit, Riviere 3 Lettres, école Ingénieur Aéronautique Toulouse, Salaire Assistant Administratif Et Financier, Exemple Avis Ebay, Fête De Fatima Portugal 2020,